

CNC Program - Corner Radius Definition

The use of common CAD / CAM systems requires a round insert dimension to be known for cavity machining. This is available with 7792VX cutters as shown to the right and in the reference table.

For finish pass applications:

Wiper Facet for finishing use max. feed 0,80mm/Revolution

	Programming Data (mm)			
	Insert size (mm)	Radius	R	L
To the test	06	0,80	1,37	0,40
	09	0,80	2,01	0,73
		1,20	2,27	0,67
	12	0,80	2,50	1,02
		1,20	2,73	0,97
	16	1,20	4,18	1,46

Calculation of the average chip thickness in relation with the D.O.C. (Axial)

Formula: Programme Feed Rate (fz)

 $f_z = h_m x \sqrt{\frac{d}{a_p}}$

- $\mathbf{h}_{\mathbf{m}}$ = Average chip thickness
- **a**_p = Depth of cut
- f_z = Feed per tooth

d = Insert diameter 45mm Theoretical Diameter for all high feed insert sizes = 45mm

 $h_m = f_z \times \sqrt{\frac{a_p}{d}}$

Formula: Average Chip Thickness (hm)

Calculation of the average chip thickness in relation with the ae (Radial Engagement) if ae is less than 50% of Dia.

Formula: Programme Feed Rate (fz)

$$f_z = h_m x \sqrt{\frac{d}{a_m}}$$

- $\mathbf{h}_{\mathbf{m}}$ = Average chip thickness
- **a**_e = Radial engagement
 - f_z = Feed per tooth
 - **d** = Cutter diameter

 $h_m = f_z x \sqrt{\frac{a_e}{d}}$

Formula: Average Chip Thickness (hm)

