

7700VR Technical Information

Working Diameter:

axial depth of cut.

engagement and depth of cut.

$$D_{w} = D_{2} + 2 x$$
 $\sqrt{r^{2} - (r - a_{p})^{2}}$

where:

D_w = Working Diameter
D₂ = Diameter of cutter insert centre to centre
r = Insert radius

7710VR Technical Information

where:

 f_z = Feed per tooth

h_m= Average chip thickness

r = Insert radius

ae = Radial Depth of Cut

 a_p = Axial Depth of Cut

Formula to calculate the average chip thickness hm in relation with radial

 $f_z = \frac{h_m}{\sqrt{r^2 - (r - a_e)^2}} \times \frac{\sqrt{r^2 - (r - a_p)^2}}{r}$

Formula to find programmed feed rate based on radial engagement and

 $h_m = f_z x$ $\frac{\sqrt{r^2 - (r - a_e)^2}}{r} x \frac{\sqrt{r^2 - (r - a_p)^2}}{r}$

Simplified formulas to evaluate hm and fz based on radial engagement or depth of cut.

Calculation of the average chip thickness in relation with the D.O.C. (Axial)

Formula: Programme Feed Rate (f_z)

$$f_z = h_m \times \sqrt{\frac{d}{a_p}}$$

h_m = Average chip thickness

a_p = Depth of cut
 f_z = Feed per tooth
 d = Insert diameter

Formula: Average Chip Thickness (hm)

$$h_m = f_z \times \sqrt{\frac{a_p}{d}}$$

Calculation of the average chip thickness in relation with the ae (Radial Engagement) if ae is less than 50% of Dia.

Formula: Programme Feed Rate (fz)

$$f_z = h_m \times \sqrt{\frac{d}{a_a}}$$

h_m = Average chip thickness

a_e = Radial engagement

f_z = Feed per tooth

d = Cutter diameter

Formula: Average Chip Thickness (h_m)

$$h_{m} = f_{z} \times \sqrt{\frac{a_{e}}{d}}$$

